
So�ware Development (cs2500)

Lecture 22: �e Java Library

M.R.C. van Dongen

November 23, 2010

Contents

1 Introduction 1

2 Fixing the Bug 2

2.1 �ree Options . 2

3 Meet the ArrayList 3

3.1 Adding the Type . 4

3.2 Wrapper Classes . 5

3.3 Caching . 6

3.4 ArrayLists are Iterable . 6

3.5 Using the Class . 7

4 Comparison 9

5 Packages 10

6 �e JavaApi 11

7 ForWednesday 11

1 Introduction

Today we shall study the Java Library. �e Java library provides many useful prede�ned class code.

Speci�cally, we shall study the ArrayList class from the Java Collections. Using ArrayLists we shall �x

the bug of Lecture 20.

1

2 Fixing the Bug

At the end of Lecture 20 we were discovered a bug in our SimpleDotCom class. It was caused by the fact

that our SimpleDotCom class couldn’t remove cells from its locationCells array. �e following lists the

class and instance variable declarations of the SimpleDotCom class. To allow us to quickly switch to and

from testing mode, we’ve made a little change by introducing a boolean called testing and by letting the

construction of the Random object depend on the value of this new variable.

public class SimpleDotCom {
private static final boolean TESTING = true;
private static final int DEFAULT_SEED = 0;
private static final Random rand = (TESTING

? new Random(DEFAULT_SEED)
: new Random());

private static final int MAX_CELL_VALUE = 6;
private static final int CELLS_IN_DOT_COM = 3;
private int hits;
private final int[] locationCells;
…

}

Java

2.1 �ree Options

We have three obvious options to �x the bug

1. �e �rst solution is using a boolean array to record which indices in cellLocations have been hit.

2. Our second option is to use a special value for cell locations which have been hit.

private static final int HIT = -1;
…

if (〈cell is hit for the first time〉) {
cellLocations[cell] = HIT;

}

Java

3. Our �nal solution is neater. We simply remove the cell from the cell locations. We may do this

by adding a instance attribute size to count the number of unguessed cell locations. For each

�rst hit of a cell, we simply remove the corresponding cell from the array. If the order of the cells

matters this means moving cell locations “down”. We may also implement this by moving the last

cell to the hit position and by decrementing the size. Of course care should be taken that we may

have to re-implement other methods if the new representation of the location cells breaks some

invariant which we relied on before. For example, let’s assume we deciding to opt for removing a

cell by decreasing the size and moving the last cell to the position of the removed cell. Choosing

2

this implementation would break the invariant that the cells are consecutive, thereby breaking the

second and third implementation of the method findLocation() from Lecture 20.

private int size = CELLS_IN_DOT_COM;
…

if (〈cell is hit〉) {
size --;
for (int index = cell; cell != size; index ++) {

cellLocations[index] = cellLocations[index + 1];
}

}

Java

Obviously, we have to change the way we deal with hits because we now have to take the size
attribute into account.

3 Meet the ArrayList

In the previous section we presented three ideas to �x the bug in our SimpleDotCom class. Arguably, the last

is the prettier, more elegant solution. As it turns out we’re fortunate because we don’t have to implement

the “cell removal” from scratch. It turns out there already is a class that implements the functionality of

removing cells from “arrays”. �e name of the class is ArrayList.

An ArrayList behaves very much like an array, but it is allowed to grow and shrink. �e following

describes some of the methods provided by ArrayLists.

void add(Object elem): Adds elem at the end of this ArrayList, thereby increasing the size of the

ArrayList.

Object remove(int index): Removes object at position index from the list and returns the removed

object. By removing the object at position index, the object with higher indices are moved to the

previous index position, thereby �lling up the gap. As a result of the remove() operation, the size

of the array decreases by one.

boolean remove(Object elem): Removes the “�rst” Object elem from the list (if it’s in the Ar-
rayList). �e call returns true if and only if an object is removed. As already mentioned, the

method removes the “�rst” object. �e meaning of “�rst” depends on the implementation of the

ArrayList’s iterator() method. �is works as follows. �e iterator() method returns an

Iterator, which is an object similar to a Scanner object. Using the Iterator we can iterate over

the things in the ArrayList. �e iteration results in a sequence of objects and the �rst object, o,

such that elem.equals(o) is removed from the ArrayList.

boolean contains(Object elem): Returns true if and only if this ArrayList contains elem.

boolean isEmpty(): Returns true if and only if this ArrayList is empty.

3

int indexOf(Object elem): Returns -1 if elem is not contained in the ArrayList. Otherwise, it

returns the smallest index, i, such that (1) elem == null and get(i) == null, or (2) elem !=
null and elem.equals(get(i)).

1

int size(): Returns the size of this ArrayList.

Object get(int index): Returns the element at position index in this ArrayList.

Object set(int index, Object o): Set object at position index: �is method substitutes o for the

original object at position index. �e method returns the original object.

3.1 Adding the Type Parameter

ArrayLists are di�erent from normal arrays. �ey cannot contain primitive type values and may only

contain Objects. Let’s assume the object type of the objects in the ArrayList is called T. You add the T in

angled brackets a�er the word ArrayList:

ArrayList<T> list; Java

Adding the ‘<T>’ adds a level of protection because it tells the compiler that the list should only

contain type-T objects (or objects of a subtype of T). You create a new ArrayList in a similar way. Again

you add the T in angled brackets a�er the word ArrayList:

list = new ArrayList<T>(); Java

It is possible (and perfectly valid) to omit the <T>. E�ectively, this is equivalent to using Object for

T: using ‘<Object>’. First, this makes it impossible for compiler to help you detect errors when adding

objects to/ writing objects to the ArrayList.

�e following exampled demonstrates what happens when you don’t use the additional type infor-

mation and start adding objects to the IntArray. �e point of the example is that the IntArray which

is created in Line 1 is only supposed to contain Child object references. Lines 2 and 3 add some Child
objects to the IntArray, which is �ne. However, Line 4 adds a GrandParent object reference, which is

not a Child object reference. As a result of this last addition, the IntArray now contains objects which it

wasn’t supposed to contain.

ArrayList children = new ArrayList(); // Hrmmmm.
children.add(new Child("Bart"));
children.add(new Child("Lisa"));
children.add(new GrandParent("Abraham")); // Asking for troubles.

Don’t Try this at Home

Second, it becomes tedious to get objects from the ArrayList. Speci�cally, you have to cast most

objects to the right type. For example, continuing the previous example, we may write the following.

Child child0 = (Child)children.get(0); // Grand but tedious to write.
Child child1 = (Child)children.get(1); // Grand but tedious to write.
Child child2 = (Child)children.get(2); // Run-time error: this is no Child.

Don’t Try this at Home

1
Make sure you understand why there a distinction between the cases elem == null and elem != null?

4

Let’s examine this example a bit further. Because the compiler only knows that children contains

Objects, we have to explicitly cast these more general Objects to Child objects before we may assign them

to the Child variables. �e �rst and second assignments work �ne. Unfortunately, the third assignment

causes a run-time error because the GrandParent object which is stored at position 2 in children cannot

be cast to a Child object.

We shall learn more the advantages of adding the type information when we study the Java collections
and generics. For the moment, it su�ces to say that you should always add the additional type information.

�e following exampled demonstrates what happens when you do add the additional type information

and start adding objects to the IntArray. Adding the type information ‘<Child>’ tells the Java compiler

that the the IntArray which is created in Line 1 is only supposed to contain Child object references.

Lines 2 and 3 add some Child objects to the IntArray, which is �ne. However, Line 4 attempts adding

GrandParent object reference. Since this is not a Child object reference, the Java compiler will complain

at compile time.
ArrayList<Child> children = new ArrayList<Child>(); // Excellent.
children.add(new Child("Bart"));
children.add(new Child("Lisa"));
children.add(new GrandParent("Abraham")); // Not allowed at compile time.

Don’t Try this at Home

3.2 Wrapper Classes

We’ve already seen that ArrayLists may only hold objects. As a consequence it is impossible to have

primitive type ArrayLists. Fortunately, each primitive type has an equivalent Object type wrapper class.

For each primitive type class there is an equivalent object wrapper class which can represent primitive type

values. �is is probably is implemented by having an instance attribute which stores the primitive type

value. �e wrapper class de�nes a getter method which lets you get the value of the attribute. However, the

wrapper objects are immutable, which means you cannot set the value. �e names of these wrapper classes

are usually formed by turning the �rst letter of the primitive type in an upper case letter: Float, Double,

Boolean, …. Unfortunately, this convention has two exceptions: the int wrapper class is called Integer
and the char wrapper class is called Character. Java automatically converts between the primitive types

and their object type equivalents.

Autoboxing: �e autoboxing operation turns a primitive value into its object type.

Unboxing: �e unboxing operation turns a wrapper class object into its primitive type.

�e following is an example of autoboxing. �e assignment of the primitive int value 2 to the Integer
variable in Line 2 is a two-stage process. Clearly, assigning a primitive type value to an object reference

variable is impossible. �erefore, the primitive type int value is converted to an Integer in the �rst stage.

�is is the autoboxing step. In the second stage the Integer is assigned to the variable. �e last statement

also involves autoboxing because a primitive type int value is provided as the argument of list.add(),

which expects an Integer.

5

Integer i1 = new Integer(1); // Create new Integer
Integer i2 = 2; // autoboxing
ArrayList<Integer> list = new ArrayList<Integer>();
list.add(i1); // no autoboxing
list.add(3); // autoboxing

Java

�e following is an example of unboxing. Basically, this is the converse operation of autoboxing. �e

values which are wrapped by the boxed type Integer are converted to their primitive type equivalents.

�e statements which involve unboxing are in Lines 2 and 3.

Integer integer = new Integer(3);
int i1 = integer; // unboxing
int i2 = list.get(2); // unboxing

Java

3.3 Caching

Primitive type wrapper classes implement caching for a limited number of values. �is guarantees that a

limited number of deeply wrapper objects are also shallowly equal: �is means that for a limited number

of objects it is guaranteed that o1.equals(o2) if and only if o1 == o2. For example, new Integer(0
) == new Integer(0). In general this does not always work. For example, new Integer(666) ==
new Integer(666) may not hold. �e reason for caching is that it saves memory. In general caching

works for “small” primitive values. �e following are some values for which caching is guaranteed.

boolean: true and false.

byte: 0–255.

char: \u0000–\u007f.

short: -128, -127, …, 127.

int: -128, -127, …, 127.

3.4 ArrayLists are Iterable

ArrayLists can be used using the enhanced for statement.

ArrayList<Integer> ints = new ArrayList<Integer>();
ints.add(0);
ints.add(new Integer(-1));
ints.add(2);
for (Integer i : ints) {
〈use i〉

}

Java

6

ArrayLists are really versatile. �ey have a method ‘Iterator iterator()’ which allows you to

traverse the ArrayList from start to end using the hasNext()-next() mechanism, which we studied

for Scanners. Iterators also take type parameters. Moreover, they allow you to delete the “current”

element from the iterated collection. �e following demonstrates how this may be used to remove all

negative values from a given ArrayList consisting of Integers.

ArrayList<Integer> ints = new ArrayList<Integer>();
ints.add(0); // autoboxing
ints.add(-1);
ints.add(2);
Iterator<Integer> iter = ints.iterator();
// Remove all negative values.
while (iter.hasNext()) {

int next = iter.next(); // unboxing
if (next < 0) {

iter.remove();
}

}

Java

More about all this magic when we study Java collections, generics, and the Iterator design pattern.

3.5 Using the Class

�is section shows a possible way to �x the bug in the SimpleDotCom class.

�e following shows the class and instance attributes. �is time we’re using an ArrayList for our

locationCells variable. Since we’re storing Integer values, we add the type parameter Integer.

private static final int DEFAULT_SEED = 0;
private static final Random rand = (TESTING

? new Random(DEFAULT_SEED)
: new Random());

private final static int MAX_CELL_VALUE = 6;
private final static int CELLS_IN_DOT_COM = 3;
private int guesses;
private ArrayList<Integer> locationCells;

Java

�e constructor is as follows. As should be practice from now on, we add the type parameter Integer
to the call to the constructor.

public DotCom() {
guesses = 0;
locationCells = new ArrayList<Integer>();
setLocationCells();

}

Java

Changing the method getResultAsString() is equally easy.

7

private String getResultAsString(boolean found) {
String result;
if (!found) {

result = "miss";
} else if (locationCells.isEmpty()) {

result = "kill: you required " + guesses + " guesses";
} else {

result = "hit";
}
return result;

}

Java

Changing checkYourself() requires a few changes. First we decide if the given guess corresponds

to a cell value in the ArrayList. �is is done by using the instance method indexOf(). �e method

only returns -1 if cell is not in locationCells. Otherwise, it returns the index of the “le�most” cell in

locationCells that contains the (autoboxed) value of cell. Second, we remove the value cell from

locationCells if it contains the value. �is is done using the instance method remove: the removal is by

the position (index) in locationCells.

public String checkYourself(String guess) {
guesses ++; // increase guesses
final int cell = Integer.parseInt(guess);
final int index = locationCells.indexOf(cell); // autoboxing
final boolean found = index >= 0;
if (found) {

// Remove cell using its index.
locationCells.remove(index); // no autoboxing!

}
return getResultAsString(found);

}

Java

It is important to once more consider the previous solution for checkYourself. For example, the

instance method remove has two possible types: we say that it is overloaded. In the �rst type the method

takes an int and in the second it takes an Object. Since an int is used in the previous example, the Java
compiler assumes we want to use the �rst method.

�e following is �awed.

8

public String checkYourself(String guess) {
guesses ++; // increase guesses
final int cell = Integer.parseInt(guess);
final int index = locationCells.indexOf(cell);
final boolean found = index >= 0;
if (found) {

// Doesn’t work: int cell is interpreted as index.
locationCells.remove(cell);

}
return getResultAsString(found);

}

Don’t Try this at Home

�e reason why it is �awed is is that cell is an int. �erefore, the compiler assumes that we want to

use the method Object remove(int index) to remove an object by its index.

However, we can remove the objects from the array, so the following should work.

public String checkYourself(String guess) {
guesses ++; // increase guesses
final int cell = Integer.parseInt(guess);
final int index = locationCells.indexOf(cell); // autoboxing
final boolean found = index >= 0;
if (found) {

final Integer integer = locationCells.get(index);
locationCells.remove(integer); // no unboxing

}
return getResultAsString(found);

}

Java

�is time the argument of remove is an Object. Using this type, the compiler assumes we want to use

the method boolean remove(Object elem), which removes its argument (as an object) from the list.

4 Comparison

�is section compares ordinary arrays and ArrayLists.

• Arrays have a �xed size. Once created, an array’s length remains �xed.

• ArrayLists grow and shrink. Adding objects to and removing objects from ArrayLists a�ects

their size.

– �e call list.add(Object elem) adds elem to the end of list and increments the size of

list.

– �e call list.remove(Object elem) removes the �rst instance of elem from list and

decrements the size of list.

9

– �e call list.remove(int index) removes object at position index from list and decre-

ments the size of list.

• Arrays have a special notation to get/set a member: array[index].

• ArrayLists don’t have a special notation:

– �e call list.set(index, elem) sets the element at position index in list to elem.

– �e call list.get(index) returns the element at position index in list.

5 Packages

�e ArrayList class is not the only Java library. In this section you will learn a bit more about the library

and the packages it provides. �e Java api groups classes into packages. For example:

• �e javax.swing package contains lots of gui-related classes.

• �e java.swing package contains lots of utility classes.

• �e java.lang package contains classes which are automatically loaded.

In order to use a class, you need to know the package it’s in. �ere are three ways to use a class from a

given package.

1. �e classes in java.lang are used as per usual. You use the short class name when referring to the

class.

int rand = (int)(4 * Math.random()); Java

2. You import a class which is not in java.lang. Here you also refer to the class by its usual name.

import java.util.ArrayList;
…

ArrayList<Integer> ints = new ArrayList<Integer>();

Java

3. You don’t import a class which is not in java.lang. �is time you refer to the class by its fully

quali�ed name, which is the name you get by writing 〈package〉.〈class〉, where 〈package〉 is the

name of the package and 〈class〉 is the name of the class.

java.util.ArrayList<Integer> ints;
ints = new java.util.ArrayList<Integer>();

Java

�ere are several advantages to packages.

• Packages help you organise you classes. For example, they help you group related classes into a

single package.

10

• �e second advantage is that packages provide name scope, which allows you to use the same class

name in di�erent packages.

package1.Class c1 = new package1.Class();
package2.Class c2 = new package2.Class();

Java

• �e �nal advantage of packages is that they provide an extra privacy level on top of private and

public. �is security level, which is called package, grants access to all classes in the same package.

Packages are not examinable. You are not supposed to implement packages for your assignments.

6 �e JavaApi

�ere are so many packages and libraries around that may be di�cult to learn about them. Given a class,

you typically want to know:

• What classes are in the library?

• How to use a given class?

�ere are two ways to �nd more about it:

• Read a book. Some Java books provide detailed or less detailed descriptions about packages,

classes, and methods and attributes that are provided by the classes.

• Browse the web api documentation.

– Visit http://java.sun.com/j2se/1.5.0/docs/api and read the online documentation.

– �e format of the documentation is standard javadoc.

Alternatively, you may ask a friend or a web forum.

7 ForWednesday

Study the notes and study Chapter 6.

11

	Introduction
	Fixing the Bug
	Three Options

	Meet the ArrayList
	Adding the Type
	Wrapper Classes
	Caching
	ArrayLists are Iterable
	Using the Class

	Comparison
	Packages
	The Java Api
	For Wednesday

